Epkg User Manual

for version 4.1.1

Jonas Bernoulli

Copyright (C) 2016-2025 Jonas Bernoulli <emacs.epkg@jonas.bernoulli.dev>
You can redistribute this document and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

Table of Contents

1

2

3

6

7

Introduction.............l 1
Installation L. 2
Listing Packages 3
Describing a Package 5
Package Types ..., 6
Using Epkg Objects 8
Querying the Database......................... 10

Appendix A Function and Command Index....11

Appendix B Variable Index 12

1 Introduction

Epkg provides access to a local copy of the Emacsmirror package database. It provides low-
level functions for querying the database and a package.el-like user interface for browsing
the database.

Epkg itself is not a package manager, but the closely related Borg' package manager
makes use of it.

The Emacsmirror is a growing collection of Emacs Lisp packages. All mirrored packages
are available as Git repositories. In most cases this is done by mirroring the upstream Git
repository, but if upstream uses something else, then the mirror nevertheless makes the
package available as a Git repository.

One primary purpose of the Emacsmirror is to provide a comprehensive list of available
Emacs packages, including packages which have gone out of fashion (but might later prove
to be useful still).

Older efforts attempting to provide a comprehensive list of available packages, such as
the Emacs Lisp List, over time collected an impressive list of dead links to packages which
were no longer available anywhere.

With the Emacsmirror this won’t happen. If a package’s upstream disappears, then
a copy remains available on the mirror. Once its upstream has disappeared a package is
usually moved from the Emacsmirror to the Emacsattic, where it is no longer updated.
(The Emacsattic is a Github "organization" separate from the Emacsmirror organization,
but it is considered part of the Emacsmirror project.)

For more information about the Emacsmirror visit its homepage? and the blog post in
which the current incarnation was announced?.

1 https://emacsair.me/2016/05/17/assimilate-emacs-packages-as-git-submodules
2 https://emacsmirror.net
3 https://emacsair.me/2016/04/16/re-introducing-the-emacsmirror

https://emacsair.me/2016/05/17/assimilate-emacs-packages-as-git-submodules
https://emacsmirror.net
https://emacsair.me/2016/04/16/re-introducing-the-emacsmirror

2 Installation

Epkg is available from Melpa and Melpa-Stable. To install it and its dependencies run M-x
package-install RET epkg RET.

The Epkg database is stored in an SQLite database, which it accesses using the EmacSQL
package.

Because the command line tool that comes with SQLite is unreliable, EmacSQL uses its
own binary. By default that binary is compiled every time EmacSQL is updated, and if
that fails, then EmacSQL asks whether you want to download a pre-build binary.

The SQLite database file is stored in a Git repository. If Epkg cannot find your local
clone of that repository, then it offers to clone it to the location specified by the option
epkg-repository. It isn’t necessary but preferable to clone the repository manually before
loading epkg.

git clone https://github.com/emacsmirror/epkgs.git ~/.emacs.d/epkgs

If you cloned the repository to a different location, then you have to set the value of epkg-
repository accordingly. Add the following to your init file and don’t forget to evaluate
that form so that it also takes effect in the current session. To do so place the cursor after
the closing parentheses and type C-M-x.

(setq epkg-repository "/path/to/epkgs/")

epkg-repository [User Option]
This option specifies the location of the local Emacsmirror repository.

This repository contains the Epkg SQLite database and, if they have been initialized,
all package repositories from the Emacsmirror and Emacsattic as submodules.

If you change the value of this option, then you should also manually move the
repository. Otherwise it would be cloned again.

The local clone of the Epkg repository is not updated automatically, so you should
periodically use M-x epkg-update RET to update the database.

epkg-update [Command]|
This command updates the Epkg database by pulling the master branch in the epkg-
repository and then reloading the Epkg database. It returns the database connec-
tion.

3 Listing Packages

Epkg provides several commands for listing packages.

In the buffer which lists packages, typing RET displays information about the package at
point in another buffer.

epkg-list-exclude-types [User Option]
The value of this option is a list of package types. Most commands that list packages
exclude any package whose type matches one of the types listed here. The command
epkg-list-packages-of-type does not respect this option, and you can tell the
other commands to ignore it as well by using a prefix argument.

epkg-list-columns [User Option]
This option lists the columns used in buffers that list packages.

Each element has the form (HEADER WIDTH SORT PROPS SLOT FORMAT).
e HEADER is the string displayed in the header.
e WIDTH is the width of the column.

e SORT is a boolean or a function. If it is t, then the column can be sorted
alphanumerically, if it is nil then it can not. If it is a function then that is used

as sort’s PREDICATE.
e PROPS is an alist, supported keys are :right-align and :pad-right.
e SLOT is an Epkg object slot or type.

e FORMAT is a function, which is called with one argument, the slot value, and
has to return a representation of that. If FORMAT is nil, then the value is
inserted as-is.

If an elements SLOT is downloads, then the respective SORT should be epkg-1list-
sort-by-downloads. If an elements SLOT is stars, then the respective SORT should
be epkg-list-sort-by-stars.

epkg-list-mode-hook [User Option]
This hook is run after entering Epkg-List mode, the mode used in buffers that list
packages.

epkg-list-packages [Command]

This command displays a list of all mirrored (and possibly also shelved) packages.

epkg-list-matching-packages [Command]
This command displays a list of packages whose name or summary matches a SQLite
LIKE pattern, which is read in the minibuffer.

epkg-list-keyworded-packages [Command]|
This command displays a list of packages that have a keyword set, which is read in
the minibuffer.

Only keywords that are members of finder-known-keywords are offered as comple-
tion candidates, but you can also enter other keywords.

Chapter 3: Listing Packages 4

epkg-list-packages-by-author [Command]
This command displays a list of packages which are authored or maintained by a
person. The person, a name or email address, is read in the minibuffer.

By default all of the above commands omit shelved packages from their output. With a
prefix argument or when epkg-list-packages-omit-shelved is nil, then they don’t omit
any packages. However the following command ignores this option and always lists shelved
packages when appropriate.

epkg-list-packages-of-type [Command]|
This command displays a list of packages of a certain type. The type is read in the
minibuffer. To list all packages of a certain type and its subtypes use TYPE#* instead
of just TYPE.

4 Describing a Package

To display details about a single package in a buffer use the command epkg-describe-
package. In buffers which list packages RET is bound to epkg-list-describe-package,
which displays the package at point in another buffer.

By default the description buffer shows a tree of the packages the described package
depends on. Click on the symbol before the package name to expand the node to show the
dependencies of that dependency.

The first column lists the names of package that provide the feature(s) in the third
column. The second column shows the type of the package in the first column.

The features in the third column are displayed in bold or using the regular font weight
to indicate whether it is a hard (mandatory) or soft (optional) dependency.

Note that dependencies are determined automatically and even when a feature is shown
using a bold face it might actually be optional. This could for example be the case when
a feature is only required by one library that isn’t required by any of the other libraries of
the package it belongs to. Or a feature might even only be required by a single command,
and the respective require form is only evaluated when that command is called.

Reverse dependencies are also displayed in a second tree. Here the first column lists
the names of packages which depend on features from the described package and the third
column shows which of these libraries are required.

epkg-describe-package [Command]
This command displays information about a package in a separate buffer. The name
of the package to be displayed is read in the minibuffer.

epkg-list-describe-package [Command]|
This command displays information about the package at point in a separate buffer.
It is only intended to be used in buffers which list packages. In other buffers, or in
a list buffer when you want to display a package other than the one at point use
epkg-describe-package.

epkg-describe-package-slots [User Option]
The value of this option is a list of slots to be displayed when displaying information
about an Epkg package in a help buffer.

Each element of the list can be a function, a slot symbol, or nil. Functions are called
with one argument, the Epkg object, and should insert a representation of the value
at point. Raw slot symbols cause its non-nil value to be inserted as-is. If a slot’s
value is nil, then nothing is inserted. Elements that are nil stand for empty lines.

epkg-describe-package-slots-width [User Option]
The value of this option specifies the width used to display slot names in buffers
displaying information about an Epkg package.

5 Package Types

Each package has a type, which specifies how the package is distributed and mirrored.

Packages are implemented using the Eieio object system (more or less in implementation
of CLOS). A TYPE corresponds to the class epkg-TYPE-package. The epkg package makes
little use of methods, but emir, the package used to maintain the Emacsmirror, makes
extensive use of them. There exist five abstract classes (there are no instances of abstract
classes, only of its subclasses): epkg-package, epkg-mirrored-package, epkg-gitish-
package, epkg-subset-package, and epkg-mocking-package. Except for the second these
classes are mostly an implementation detail and not relevant when merely using Epkg to
browse the packages.

e mirrored

This is an abstract type. Unlike other abstract types it is also useful on the client side,
e.g., when you want to list mirrored packages, but not built-in and shelved packages.

Packages that are available as a repository on the Emacsmirror (https://github.com/
emacsmirror).

o file

Packages that are distributed as plain files.

e gitish

This is an abstract type, useful when maintaining the mirror.

Git and Mercurial packages. The name is due to an implementation detail: hg is
never run directly, instead git-remote-hg is used.

o git

Git packages.

github
Packages hosted on https://github.com.
e orphaned

Packages that are no longer maintained, but which still have to be
mirrored because other packages depend on them. Please consider
adopting an orphaned package.

gitlab
Packages hosted on https://gitlab.com.
subtree

Packages that are located in a subtree of a Git repository. The repository
on the Emacsmirror limits the history to just that directory using git
subtree.

subset
This is an abstract type, useful when maintaining the mirror.
o wiki

Packages hosted as plain files on https://emacswiki.org.

https://github.com/emacsmirror
https://github.com/emacsmirror
https://github.com
https://gitlab.com
https://emacswiki.org

Chapter 5: Package Types 7

e clpa

Packages hosted in a directory inside the master branch of the GNU
Elpa repository. These package are available from https://elpa.
gnu.org.

e clpa-branch

Packages hosted in the GNU Elpa repository, using a dedicated
branch. These package are available from https://elpa.gnu.org.

e hg
Mercurial packages.
e bitbucket

Packages hosted on https://bitbucket.org in a Mercurial repository.
Packages hosted in a Git repository on Bitbucket have the type git.

e mocking
This is an abstract type, useful when maintaining the mirror.

Packages that are not available as a repository on the Emacsmirror (https://github.
com/emacsmirror).
e builtin
Packages that are part of the latest stable GNU Emacs releases. emacs is one

of the packages that are "part of Emacs"; it contains all libraries that are not
explicitly declared to be part of some other built-in package.

e shelved

Packages that are available as a repository on the Emacsattic (https://github.
com/emacsattic).

These repository are not being updated anymore, because upstream has disap-
peared or because the package has issues which have to be resolved before it can
be moved back to the Emacsmirror.

https://elpa.gnu.org
https://elpa.gnu.org
https://elpa.gnu.org
https://bitbucket.org
https://github.com/emacsmirror
https://github.com/emacsmirror
https://github.com/emacsattic
https://github.com/emacsattic

6 Using Epkg Objects

Most users won’t have to access the Epkg objects directly and can just use the commands
described in the preceding sections, but if you would like to extend Epkg, then you should
know about the following functions.

Epkg objects are implemented using Eieio, which more or less is an implementation of
CLOS. It’s useful to learn about that, but to get started you may just use oref to obtain
information about a package, e.g., (oref (epkg "magit") url).

epkg name [Function]
This function returns an epkg-package object for the package named NAME. NAME
is the name of a package, a string.

epkgs &optional select types [Function]
This function returns a list of epkg-package objects, column values or database rows.
The list is ordered by the package names in ascending order.

If optional SELECT is non-nil, then it has to be symbol naming a column in the
packages table or a vector of such columns. In those cases the returned value is a
list of column values or a list of database rows. If SELECT is nil, return a list of
objects.

If optional TYPES is non-nil, then it has to be a vector of package types, such as
github. To include subtypes, add an asterisk to the symbol name, e.g., mirroredx.
For backward compatibility, TYPES can also be a list of predicate functions epkg-
TYPE-package-p or epkg-TYPE-package-—eieio-childp, or a single such function.
This function is more limited than epkg-sql but it’s often much less verbose. For
example (epkgs nil [gitlab]) returns the same value as:
(mapcar (apply-partially #'closql--remake-instance
'epkg-package (epkg-db))
(epkg-sql [:select * :from packages
:where class :in $vi
:order-by [(asc name)]]
(closgl-where-class-in 'gitlab)))

While it is possible to get a list of provided or required features, or a package’s type using
oref, the values of these slots contains additional information, which is mostly useful when
maintaining the Emacsmirror, but not in a client. And the required slot only lists features
but not the packages that provide them. The following functions return these values in a
form that is generally more useful.

epkg-provided package &optional include-bundled [Function]
This function returns a list of features provided by the package PACKAGE. PACK-
AGE is an epkg-package object or a package name, a string.
Bundled features are excluded from the returned list unless optional INCLUDE-
BUNDLED is non-nil.

epkg-required package [Function]
This function returns a list of packages and features required by the package PACK-
AGE. PACKAGE is an epkg-package object or a package name, a string.

Chapter 6: Using Epkg Objects 9

Each element has the form (DEPENDENCY FEATURES), where DEPENDENCY is the
name of a required package, a string, and FEATURES is a list of features provided
by DEPENDENCY and required by PACKAGE.

If a feature is represented using a symbol, then that indicates that it is a mandatory
dependency; if a string is used, then it is an optional dependency.

There may be a single element (nil FEATURES), which means that it is unknown
which package or packages provide the feature or features listed in FEATURES.

epkg-provided-by feature [Function]
Return the name of the package provided by FEATURE. FEATURE has to be a
symbol.

epkg-reverse-dependencies package [Function]

This function returns a list of packages that depend on PACKAGE. PACKAGE is
an epkg-package object or a package name, a string.

Each element has the form (DEPENDANT FEATURES), where DEPENDANT is the name
of a package that depends on PACKAGE, a string, and FEATURES is a list of features
provided by PACKAGE and required by DEPENDANT.

If a feature is represented using a symbol, then that indicates that it is a mandatory
dependency; if a string is used, then it is an optional dependency.

epkg-type arg [Function]
This function returns the type of the object or class ARG.
ARG has to be the class epkg-package, a subclass of that, an epkg-package object,
or an object of a subclass. The type represents the class and is used in the user
interface, where it would be inconvenient to instead use the actual class name, because
the latter is longer and an implementation detail.

epkg-package-types subtypes [Function]
This function returns a list of all package types.

If optional SUBTYPES is non-nil, then it also returns symbols of the form TYPEx*,
which stands for "TYPE and its subtypes".

epkg-read-type prompt &optional default subtypes [Function]
This function reads an Epkg type in the minibuffer and returns it as a symbol.
If optional DEFAULT is non-nil, then that is offered as default choice. If optional
CHILDP is non-nil, then entries of the form TYPE#, which stands for "TYPE and its
subtypes", are also offered as completion candidates.

epkg-read-package prompt &optional default [Function]
This function reads the name of an Epkg package in the minibuffer and returns it as
a string.

Optional DEFAULT, if non-nil, is offered as default choice.

10

7 Querying the Database

If you are more interested in information about all or a subset of mirrored packages, as
opposed to individual packages, then you should query the database directly instead of
using the functions epkg and epkgs.

This is usually much more efficient, but requires that you know a bit about SQL, specif-
ically SQLite!, and that you make yourself familiar with the syntax used by EmacSQL? to
express SQL statements.

The statistics about the Emacsmirror and related package archives® for the most part
use epkg-sql, you might find the tools* used to create those statistics useful when getting
started with that function.

epkg-db [Function]
This function returns the connection to the Epkg database.

If the epkg-repository, which contains the SQLite database file, does not exist yet,
then this function first asks the user whether they want to clone the repository.

epkg-sql sql &rest args [Function]
This function sends the SQL S-expression to the Epkg database and returns the result.
This is a wrapper around emacsql that lacks the CONNECTION argument. Instead
it uses the connection returned by epkg-db.

1 https://sqlite.org/lang.html

2 https://github.com/skeeto/emacsql

3 https://emacsmirror.net/stats

4 https://github.com/emacsmirror/epkg-reports

https://sqlite.org/lang.html
https://github.com/skeeto/emacsql
https://emacsmirror.net/stats
https://github.com/emacsmirror/epkg-reports

11

Appendix A Function and Command Index

PR . 8
epkg-db ... 10
epkg-describe-package 5
epkg-list-describe-package................... 5
epkg-list-keyworded-packages 3
epkg-list-matching-packages 3
epkg-list-packages................ 3
epkg-list-packages-by-author 4
epkg-list-packages-of-type................... 4

epkg-package-types.............l 9

epkg-provided.....................ooooooLL 8
epkg-provided-by ... 9
epkg-read-package.................ia.. 9
epkg-read-type ... 9
epkg-required..........l 8
epkg-reverse-dependencies.................... 9
epkg-sql 10
ePKE-tYPe . ..o 9
epkg-update.......... ... il 2
EPRES . o 8

Appendix B Variable Index

epkg-describe-package-slots
epkg-describe-package-slots-width...........

epkg-list-columns

12

epkg-list-exclude-types...................... 3
epkg-list-mode-hook........................... 3
epkg-repository 2

	Table of Contents
	1 Introduction
	2 Installation
	3 Listing Packages
	4 Describing a Package
	5 Package Types
	6 Using Epkg Objects
	7 Querying the Database
	A Function and Command Index
	B Variable Index

